

®

November 4th 2013
Document-No: DB_PCapØ2_Linearize_en V0.2

® PCapØ2 Linearize

 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Publ ished by acam-messelectronic gmbh
©acam-messelectronic gmbh 2013

Legal note
The present manual (data sheet and guide) is still under development, which may result in
corrections, modifications or additions. acam cannot be held liable for any of its contents,

neither for accuracy, nor for completeness. The compiled information is believed correct,
though some errors and omissions are likely. We welcome any notification, which will be
integrated in succeeding releases.

The acam recommendations are believed useful, the firmware proposals and the
schematics operable, nevertheless it is of the customer‘s sole responsibility to modify, test

and validate them before setting up any production process.
acam products are not designed for use in medical, nuclear, military, aircraft, spacecraft

or life support devices. Nor are they suitable for applications where failure may provoke
injury to people or heavy material damage. acam declines any liability with respect to such

non-intended use, which remains under the customer‘s sole responsibility and risk.
Military, spatial and nuclear use subject to German export regulations.

acam do not warrant, and it is not implied that the information and/or practice presented
here is free from patent, copyright or similar protection. All registered names and

trademarks are mentioned for reference only and remain the property of their respective
owners. The acam logo and the PICOCAP logo are registered trademarks of acam-

messelectronic gmbh, Germany.

Support / Contact
For a complete listing of Direct Sales, Distributor and Sales Representative contacts, visit

the acam web site at:

http://www.acam.de/sales/distributors/

For technical support you can contact the acam support team in the headquarters in
Germany or the Distributor in your country. The contact details of acam in Germany are:

support@acam.de or by phone +49-7244-74190.

http://www.acam.de/sales/distributors/

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1-1

Content

1 Introduction .. 1-1

1.1 Non-Linearity and Temperature Dependence .. 1-1

1.2 Polynomial Approximation .. 1-2

1.3 Determination of coefficients .. 1-4

1.4 1/2-point calibration .. 1-5

2  Linearize Firmware Version 03.02.xx ... 2-6

2.1 Functionality .. 2-6

2.2 Implemented Functions .. 2-7

2.3 Result Registers .. 2-10

2.4 EEPROM ... 2-10

2.5 Parameter Registers .. 2-13

3 Linearization by Means of Evaluation Software ... 3-16

3.1 Sample Project (purposes of illustration) ... 3-16

3.2 Sensor Characterization .. 3-16

3.3 Temperature Sensor Characterization .. 3-17

3.4 One/Two Point Calibration ... 3-19

3.5 Expert .. 3-20

3.6 Load & Save .. 3-20

3.7 Write to EEPROM ... 3-21

4 DLL Functions ... 4-1

4.1 Capacitance .. 4-1

4.2 Temperature ... 4-5

5 Linearize Example Source Code ... 5-7

5.1 Example C-Code ... 5-7

5.2 Output via Terminal: .. 5-10

7 Miscellaneous ... 7-11

® PCapØ2 Linearize

1-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1-1

1 Introduction

Most types of capacitive sensors show a non-linear behavior. This means that the the

physical unit Z and the sensor’s capacitance is not simply linearly proportional.

Furthermore, the relation will include a temperature dependent term. The physical unit

itself may be pressure, humidity, position or anything else.

This datasheet describes the linearization firmware PCapØ2_Linearize, version 03.02.xx.

This firmware is provided by acam for free and can be used to linearize sensors and to

compensate them over temperature inside on the chip. Running with this firmware, the

PCapØ2 provides not only the basic capacitance (sensor) and resistance ratios

(temperature). The 48-bit DSP takes the resistance ratio to calculate the temperature

and, based on this, takes the capacitance ratio to do all the further calculations. The final

results Z for the sensor and the temperature  are provided in read registers 0 and 1.

The linearization coefficients can be determined individually and stored in the EEPROM. For

a simplified process the firmware offers the option of a simple 2-point calibration where

the same linearization coefficients are used for a complete batch of sensors. Individual

sensors are then calibrated only at two points.

1.1 Non-Linearity and Temperature Dependence

The characteristics of the non-linearity as well as the behavior over temperature are

defined by the mechanical, electrical and chemical properties of the sensor itself.

Figure 1-1Non-Linearity and Temperature Influence

So in any case it is necessary to

characterize a sensor by collecting

data at different temperatures for

various reference values of the unit

of interest. On the basis of those

data, a processor can correct the

measured value by means of a

correction table or a complex

mathematical calculation. In many

cases mathematical operations for

linearization are very effective and

M
e

as
u

re
d

 C
ap

ac
it

an
ce

Physical Unit Z

Non-linearity and Temperature Depndence

® PCapØ2 Linearize

1-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

provide higher precision than correction tables.

1.2 Polynomial Approximation

An elegant way to approximate a non-linear function is the polynomial approach. The higher

the order of the polynomial the better will be the approach. Of course, the mathematical

effort will also increase with that. The following graph illustrates the “best-fit” – curves

ranging from a straight line to a 3rd order polynomial:

Figure 1-2 Polynomial Approximation

The blue dots indicate a non-

linear response of a sensor. The

red line shows the linear

approximation, the yellow line an

approximation by a polynomial of

2nd order and the green line an

approximation by a polynomial of

3rd order. Obviously the quality of

approximation gets better the

higher the order of the

polynomial – especially if the non-

linear curve bends several times

and/or has a turning point.

For the PCapØ2 linearization firmware we decided to implement a 3rd-order polynomial

approach for the linearization of the capacitance as well as for the resistance -to-

temperature conversion.

kx Coefficients of the capacitance polynomial

tcx Coefficients of the temperature polynomial
C Capacitance ratio
R Resistance ratio

Z Output quantity

Polynomial

Data

Linear (Data)

Poly. (Data)

Poly. (Data)

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1-3

Additionally, the temperature information is used to correct the capacitance information.

This correction is done by replacing the linearization coefficients by polynomials of second

degree with temperature.

kx Coefficients of linearization polynomial

ccyy Coefficients of temperature compensated polynomial
 Temperature

The 12 coefficients ccx fully describe the characteristics of the sensor. The key point is to

determine the coefficients ccyy accurately to describe the non-linear characteristic of the

sensor best possible. The choice of the right calibrations points is therefore important.

Note: In the firmware the function is expressed as a function of the temperature and

capacitance. Replacing kx in (1) with the substitution from (3a), (3b), (3c) and (3d) and

regrouping the formula gives:

® PCapØ2 Linearize

1-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

1.3 Determination of coefficients

The ccx coefficients for linearization are determined by means of least squares method. A

set of measurement data needs to be collected to characterize the sensor. The physical

parameter should be measured at minimum four values and three temperatures, in total

minimum 12 points, to have enough data for a polynomial of third degree. Having more

points will give better approximation. Critical points might be weighted by adding them

twice.

Example:

 Z Cr/Cs

20°C 10% 0,85123

20°C 20% 0,86443

20°C 30% 0,87743

40°C 10% 0,8411

… … …

Having such a data set, it is possible to determine the linearization coefficients by means

of e.g. the “least squares" method, LINEST or RGP function in Excel. acam provides a DLL

to use this function in any kind of software. The DLL is fed with the collected data and

gives back the coefficients as output. Further details are described in chapter 4.

Figure 1-3 shows again the major action items during a calibration run:

A.1 Collect raw data of capacitance ratio (ci_ratio) at various measure points by means

of the linearization firmware.

A.2 Transfer these data to the DLL.

A.3 In the DLL the coefficients will be calculated.

A.4 Get back the coefficients ccx and write the coefficients into the EEPROM.

B Make again measurements at various points and read back the Z output for

verification.

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1-5

Figure 1-3 Sensor Characterization

Output:
Coefficients

EEprom

I2C / SPI

CDC- / RDC-Unit:
Measurement of

the ratios
Measurement

Output: Z result
values (e.g. RH%)

Firmware:
LINEARIZE

executed by PC

PCap02

Result Registers:
RES0 à Z: e.g. RH%
RES1 à theta [°C]

I2C /
SPI

Dynamic Link
Library
(DLL)

Manual Input
of the ratios

Manual Input of
the coefficients

Result Registers:
RES6 à ci_ratio
RES7 à r_ratio

I2C / SPI

1

2

3

4

5

A

B

This procedure can be used for a full calibration of each single transducer and will offer

the best precision.

1.4 1/2-point calibration

In many applications a full calibration of every single sensor will be too expensive. In case

the sensors show more or less the same characteristics over a production lot, there is a

chance that 2-point calibration or even 1-point calibration is sufficient to achieve a good

level of precision. In such case, the full measurement data set is collected only for a small

number of samples. The coefficients from this sample lot are then used for all other

sensors of the lot. The individual sensor itself is calibrated only at two points, ideally taken

at two different temperatures. From those two calibration points the offset and slope are

calculated and used to correct the initial capacitance ratio. For convenience, the fi rmware

is programmed in a way that the user enters the theoretical ratios at the two calibration

points and then the really measured ratios.

The 2-point calibrated intermediate result x i is

calculated as:

xi@CCP1

xi@CCP2

xi

ci@CCP1 ci@CCP2ci

® PCapØ2 Linearize

2-6 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

x i@CCP Theoretical capacitance ratios at calibration points

ci@CCP Measured capacitance ratios at calibration points

ci Actual capacitance ratio

x i 2-point corrected capacitance ratio

This intermediate xi result is then fed into the linearization polynomial for calculation of the

final Z result.

In case of a 1-point calibration the coefficients x i@ccp1 and ci@ccp1 simply need to be set to 0.

2  Linearize Firmware Version 03.02.xx

2.1 Functionality

The Firmware is capable of performing these tasks:

 Capacitance

 Output of original inverted capacitance ratio ci_ratio (c_ref/c_sense)

 Output of x i: 2-point corrected capacitance ratio

 Output of Z: linearized and temperature corrected result

 Selectable sensor port (C1..C7, 1x 4 bit to select in PARA8)

 Single result, no support for combo sensors at the moment

 Polynomial of 3rd order for the capacitance linearization

 Coefficients are temperature corrected by a polynomial of 2nd order

 => Total 12 coefficients

 2-point calibration => another 4 calibration values

 Programmable limits for minimum/maximum of Z

 Temperature

 Output of original inverted resistance ratio ri_ratio (r_ref/r_sense)

 Output of 2-point corrected resistance ratio yi

 Output of final temperature  in °C

 Selectable temperature sensor input (R0..R2 in PARA8)

 Single result

 Linearization by polynomial 3rd order

 => 4 coefficients + 4 calibration values from 2-point calibration

 Programmable limits for minimum/maximum of 

 Alarm Outputs

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-7

 2 Alarm Outputs

 Selectable alarm source (Z-result/theta, 1 bit in PARA8)

 On/off threshold each

 Selectable polarity

 PDM

 Pulse0 := capacitance is fixed

 Pulse1:= temperature is fixed

 Each output is scalable via “scale” and “offset”

 Limits can be set in LSB

 Filter

 Selectable median 5 filter for capacitance

 Selectable median 5 filter for temperature

 Both to be activated in PARA8

2.2 Implemented Functions

2.2.1 Variables and Coefficients

 Inverse capacitance ratio
Inverse 2-point corrected

capacitance ratio

Inverse resistance ratio

Inverse 2-point corrected
resistance ratio

Linearized and temperature

compensated final result

Linearized temperature

result

Coefficients for the

capacitance polynomial, non-
inverse

Coefficients for the

inverse capacitance
polynomial

Coefficients for the

temperature polynomial, non-
inverse

Coefficients for the

inverse temperature
polynomial

Expected values for
capacitance ratios with 2-point

calibration

Expected values for
resistance ratios with 2-

point calibration

® PCapØ2 Linearize

2-8 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

2.2.2 Temperature Linearization

Inverse linearized resistance ratio

(2-Point Calibration)

 ∑

 Inverse Temperature Polynomial

 ∑

 Temperature Polynomial

2.2.3 Sensor Linearization

Inverse linearized capacitance ratio

(2-Point Calibration)

 ∑∑

 Inverse Capacitance Polynomial

 ∑∑

 Capacitance Polynomial

2.2.4 Calculation Values

The firmware takes care of the wide range of possible parameters. It therefore controls

the number of division steps and also makes the correct shift operations to achieve the full

resolution with the necessary number of relevant bits during all calculations. Those data,

too, are all calculated automatically by the DLL.

cn_div32..cn_div00
Number of division steps

for capacitance linearization

cn_shift2..cn_shift0
Number of shift operations
for capacitance linearization

tn_div2..tn_div0
Number of division steps
for temperature calculation

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-9

2.2.5 Alarm Levels

The firmware provides two alarm outputs:

 Alarm0 sets output DSP0 which can be passed to general purpose I/Os PG0 or PG2.

 Alarm1 sets output DSP1 which can be passed to general purpose I/Os PG1 or PG3.

Figure 2-1

The source can be selected for both

alarm outputs independently between

Z and  (Parameter 8: alarmx_sel).

Also the polarity of the alarmoutputs

can be selected independently

(Parameter 8: alarmx_pol). For each

alarm output an upper and lower

threshold can be configured. The

difference defines the hysteresis.

2.2.6 Pulse Outputs

The use of the two pulse density modulated outputs is fixed.

PULSE0: Z PULSE1: 

Slope and offset are set independently in parameter registers 3 to 6. The limits for the

PULSE outputs are defined by Pulse_Z_min, Pulse_Z_max, Pulse_theta_min and

Pulse_theta_max (EEPROM values 32 to 35).

The slope is set by a fractional number. In case the Z result has 15 fractional digits, the

slope needs to have 5 fractional digits. In general the sum of fractional digits of Z and

slope has to be 20. The slope itself depends on the configuration of the PULSE output

resolution. According to that the maximum value of PULSEx can be 1023, 4095, 16383

or 65535.

The offset is set with 1 fractional bit, although the final pulse output needs to be an

integer. This allows a correct mathematical rounding in case the last bit is 1.

For details please see datasheet PCapØ2 Vol. 1 section 4.6.2.

alarm0_upper_th

alarm1_upper_th

alarm0_lower_th

alarm1_lower_th

Z

alarm1 / DSP1

alarm0 / DSP0

alarm_pol0 = 0, alarm1_pol = 1

® PCapØ2 Linearize

2-10 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

2.3 Result Registers

RES# name fpp* description

0 Z: 15 Z-result, final result, signed 24 bit, thereof 15 bit

fractional

1 theta [°C] 8 Temperature, signed 24 bit, thereof 8 bit
fractional

2 reserved

3 reserved

4 reserved

5 reserved

6 ci_ratio 22 (Median of) selected capacitance ratio, 24 bit,

thereof 22 bit fractional

7 ri_ratio 22 (Median of) selected resistance ratio, 24 bit,
thereof 22 bit fractional

8 xi_ratio 22 2-point corrected ci_ratio, , 24 bit, thereof 22 bit

fractional

9 yi_ratio 22 2-point corrected ri_ratio, , 24 bit, thereof 22 bit
fractional

10 Pulse_Z: 0 Output value for pulse interface PDM0, Z

11 Pulse_theta 0 Signed output value for pulse interface PDM1, 

*fpp = Fixed point position

2.4 EEPROM

2.4.1 Calibration Values

Name Type fpp EEPROM Addr.
[23;16],[15;8],[7;0]

Description

0 ci_at_ccp1 24u 22 0, 1, 2 Measured value of capacitance
ratio at capacitance calibration

point 1

1 ci_at_ccp2 24u 22 3, 4, 5 Measured value of capacitance

ratio at capacitance calibration
point 2

2 xi_at_ccp1 24u 22 6, 7, 8

Nominal value for capacitance
ratio at capacitance calibration

point 1

3 xi_at_ccp2 24u 22 9, 10, 11 Nominal value for capacitance
ratio at capacitance calibration

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-11

Name Type fpp EEPROM Addr.
[23;16],[15;8],[7;0]

Description

point 2

4 Z_min 24s var*

(typ 15)

12, 13, 14

Minimum output value for Z,

e.g. 0 for output in %

5 Z_max 24s var*

(typ 15)

15, 16, 17

Maximum output value for Z,

e.g. 100 for output in %

6 ri_at_tcp1 24u 22 18, 19, 20 Measured resistance ratio at
temperature calibration point 1

7 ri_at_tcp2 24u 22 21, 22, 23 Measured resistance ratio at
temperature calibration point 2

8 yi_at_tcp1 24u 22 24, 25, 26 Nominal value of resistance

ratio at temperature calibration
point 1

9 yi_at_tcp2 24u 22 27, 28, 29 Nominal value of resistance
ratio at temperature calibration

point 2

10 theta_min 24s 8 30, 31, 32 Minimum output value for ,

e.g. -40 for output in °C

11 theta_max 24s 8 33, 34, 35 Maximum output value for ,

e.g. -125 for output in °C

12 cc32 24s var* 36, 37, 38 Coefficients for the capacitance

polynomial.

In case no temperature

compensation is necessary use
only cc30, cc20, cc10 and

cc00 and set all other
coefficients to "0"

13 cc22 24s var* 39, 40, 41

14 cc12 24s var* 42, 43, 44

15 cc02 24s var* 45, 46, 47

16 cc31 24s var* 48, 49, 50

17 cc21 24s var* 51, 52, 53

18 cc11 24s var* 54, 55, 56

19 cc01 24s var* 57, 58, 59

20 cc30 24s var* 60, 61, 62

21 cc20 24s var* 63, 64, 65

22 cc10 24s var* 66, 67, 68

23 cc00 24s var* 69, 70, 71

24 tc3 24s var* 72, 73, 74 Coefficients for the

temperature polynomial.
25 tc2 24s var* 75, 76, 77

26 tc1 24s var* 78, 79, 80

® PCapØ2 Linearize

2-12 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Name Type fpp EEPROM Addr.
[23;16],[15;8],[7;0]

Description

27 tc0 24s var* 81, 82, 83

28 alarm0_upper_th 24s var* 84, 85, 86 Upper threshold for alarm0
source selectable by PARA8

fpp same as alarm source

29 alarm0_lower_th 24s var* 87, 88, 89 Lower threshold for alarm0
source selectable by PARA8

fpp same as alarm source

30 alarm1_upper_th 24s var* 90, 91, 92 Upper threshold for alarm1

source selectable by PARA8
fpp same as alarm source

31 alarm1_lower_th 24s var* 93, 94, 95 Lower threshold for alarm1
source selectable by PARA8

fpp same as alarm source

32 Pulse_Z_min 24s 0 96, 97, 98 Lower limit for Z pulse_out

PDM0 (in LSB, Normally 0)

33 Pulse_Z_max 24s 0 99, 100, 101 Upper limit for Z pulse_out
PDM0 (in LSB, normally
resolution of pulse)

34 Pulse_theta_min 24s 0 102, 103, 104 Lower limit for theta pulse_out

PDM1 (in LSB, Normally 0)

35 Pulse_theta_max 24s 0 105, 106, 107 Upper limit for theta pulse_out

PDM1 (in LSB, normally
resolution of pulse)

*var := variable value for fpp

2.4.2 Calculation Values

Name Type EEPROM
Address

Description

0 cn_div32 8u 108 Division steps for the cc32 term

1 cn_div22 8u 109 Division steps for the cc22 term

2 cn_div12 8u 110 Division steps for the cc12 term

3 cn_div31 8u 111 Division steps for the cc31 term

4 cn_div21 8u 112 Division steps for the cc21 term

5 cn_div11 8u 113 Division steps for the cc11 term

6 cn_div30 8u 114 Division steps for the cc30 term

7 cn_div20 8u 115 Division steps for the cc20 term

8 cn_div10 8u 116 Division steps for the cc10 term

9 cn_shift2 8s 117 Shift operations capacitance

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-13

Name Type EEPROM
Address

Description

10 cn_shift1 8s 118 Shift operations capacitance

11 cn_shift0 8s 119 Shift operations capacitance

12 tn_div2 8u 120 Division steps for temperature

13 tn_div1 8u 121 Division steps for temperature

14 tn_div0 8u 122 Division steps for temperature

15 123 TO 127 Free EEPROM space. Could be used

for e.g. serial numbers.

2.5 Parameter Registers

Name Type Name Description

0 PARA0 Not used

1 PARA1 Not used

2 PARA2 Not used

3 pulse_slope_Z 24s PARA3 Setting slope for the PDM0 output (Z):
fpp_Z_result + fpp_z_slope = 20
fpp_z_slope = 20 – fpp_z_result

4 pulse_offset_Z 24s PARA4 Setting offset for the PDM0 output (Z):

fpp 1

5 pulse_theta_slope 24s PARA5 Setting slope for the PDM1 output ():
fpp_theta + fpp_theta_slope = 20 bzw.

fpp_theta_slope = 20 – fpp_theta

6 pulse_theta_offset 24s PARA6 Setting offset for the PDM1 output ():

fpp 1

7 Gain_Corr 24s PARA7 Correction factor for the gain drift.
fpp 21

8 exFlags PARA8 See below

2.5.1 Flags in PARA8

Name Type Description

0 CDC_TRIG_BG PARA8<0> The CDC end triggers the bandgap
refresh

Setting this = 1 is recommended for

® PCapØ2 Linearize

2-14 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Name Type Description

typical applications

1 DSP_TRIG_CDC PARA8<1> End of DSP-caclulations triggers the
next CDC (for quasi continuouse

mode, C_TRIG_SEL=2, CONV_TIME=0,
only with firmware version 3 and later)

2 INTN_TRIG_BG PARA8<2> End of serial interface (SIF) read

command triggers the bandgap
refresh

3 INTN_TRIG_CDC PARA8<3> End of serial interface (SIF) read

command triggers the next CDC (only
reasonable with C_TRIG_SEL = 2

CONV_TIME = 0 INTN_TRIG_EN = 1,
only with firmware version 3 and

later)

4 Z_median_en PARA8<4> Enable median 5 filter for Capacitance
& Z-result

5 theta_median_en PARA8<5> Enable median 3 filter for temperature

6 alarm0_select PARA8<6> alarm0 source: (DSP_OUT_0)

 0 := Z-result

 1 := temperature

7 alarm0_pol PARA8<7> 0 := low_active

(alarm_source > upper_threshold
output = low; alarm_source <

lower_threshold => output = high)

1 := high_active
(alarm_source > upper_threshold

output = high,

alarm_source < lower_threshold

output = low)

8 alarm1_select PARA8<8> alarm1 source (DSP_OUT_1)

0 := Z-result

1 := temperature

9 alarm1_pol PARA8<9> see alarm0_pol

10

11
12

c_sel0

c_sel1
c_sel2

3u PARA8<12..10> select Capacitance for polynomial

determination:

0 := C1/C0
1 := C2/C0

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-15

Name Type Description

2 := C3/C0
3 := C4/C0

4 := C5/C0
5 := C6/C0

6 := C7/C0

13
14

r_sel0
r_sel1

2u PARA8<14..13> select resistor for temperature
polynomial:

0 := R0/Rref
1 := R1/Rref

2 := R2/Rref

® PCapØ2 Linearize

3-16 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

3 Linearization by Means of Evaluation Software

Starting with evaluation software PCap02plus version V1.2.4 the linearization feature is

implemented. Under menu item “Tools” there is a selection “Linearize” which opens a

separate Window.

Figure 3-1Linerize Menu

This new windows includes all elements to collect data for the sensor characterization, to

calculate the coefficients for linearization, and to perform a 2-point calibration. All

calculations are based on the linearize_r01.dll library file.

3.1 Sample Project (purposes of illustration)

Preparing:

non-linearized sensor, which is to be linearized

Definition of the linearized measuring range 0 to 8 inH2O, with 2 inH2O steps

Definition of the temperature range 20 to 50 °C, with 10 °C steps

3.2 Sensor Characterization

The first step is the characterization of the sensor. Therefore, it is necessary to collect

data at several measurement points and at several temperatures.

As mentioned earlier, the data collection should be made of minimum 12 measurements,

taken at least at 3 different temperatures. The temperatures should cover the operating

temperature range of interest of the final device. The number of calibration points is set at

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-17

the top left. This is the first thing to be done. Then calibration can begin. Line by li ne the

user can enter the reference values for Z and  at the various calibration points. Having

the cursor in this line it is sufficient to press the acquire button to get the actual ci_ratio

result. But of course the value can be entered manually, too.

The graph on the bottom left shows the Z,  distribution of the calibration points. Ideally it

should have dots on three different lines covering the operating range of the sensor.

The table on the left shows the calculated calibration coefficients and the graph below

shows the deviation due to the mathematical approximation.

Figure 3-2 Tab Sensor Characterization

3.3 Temperature Sensor Characterization

Together with the calibration of the capacitance sensor it is mandatory to calibrate the

temperature, too. Whether the internal aluminum sensor is used or an external platinum

® PCapØ2 Linearize

3-18 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

sensor or any other sensor: they need to be calibrated to get the correct temperature

information which is then used as input for the polynomial correction of the capacitance

measurement.

The tab „Temperature Sensor Characterization” (Figure 3-3) offers a tool very similar to

the capacitive sensor characterization. The resistance ratio has to be collected at several

temperature points. For best approximation 4 calibration points are needed. In case of 2

or 3 calibration points a 2nd respectively a 3rd order polynomial is calculated.

Figure 3-3 Temperature Sensor Characterization

On the right side of the tab “Temperature Sensor Characterization” there are two buttons

to select default characteristic data for the internal aluminum sensor and a platinum

sensor. The aluminum is assumed to be linear in a range of 10 °C to 70°C so only two

coefficients are used.

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-19

In case the default values are used it is necessary to have at least a two point calibration

of the temperature (see next section).

3.4 One/Two Point Calibration

Once a batch is characterized with respect to the capacitive sensor and the resistive

temperature sensor it might be sufficient to perform two-point or even one-point

calibration for the rest of the sensors in the batch.

The tab “One/Two Point Calibration” offers a simple GUI to do that. On this page the user

enters the reference values for Z and . CCP1 stands for capacitance calibration point 1

etc.. When the calibration conditions are reached pressing the acquire buttons will read

the actual ratios while the theoretical ones are calculated on basis of the linearization

coefficients. Together with programmable limits for minimum and maximum this gives an

additional set of 12 parameters to be written into the EEPROM.

Figure 3-4 One/Two Point Calibration

® PCapØ2 Linearize

3-20 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

3.5 Expert

As indicated by the name this tab is for experts only. It displays the numbers of division

steps respectively shift operation to achieve the maximum resolution over all calculations.

Those are stored in the EEPROM, too. But they are calculated by the DLL and for

information purpose only.

3.6 Load & Save

The linearization data as well as the One/Two Point Calibration can be exported into an

external file with extension .dat. Additionally those data can be loaded from external files

into the software.

The linearization file includes the calibration data, the polynomial coeeficients and the

multiplication steps/shifts. In following, such a file is shown as an example :

% Linearization Data File: LinData_Export.dat Saved on 29.08.2013 14:49

% c_lin_coeff_dut: C_in, theta, Z_Result
0.990373 0.968582 0.949290 0.931916 0.916191 0.901869 0.888779
 0.876746 0.865660 0.855405 0.845899 0.990578 0.968738
 0.949436 0.932071 0.916365 0.902076 0.889012 0.877027
 0.865987 0.855779 0.846315 0.990343 0.968419 0.948988
 0.931478 0.915617 0.901155 0.887920 0.875752 0.864536
 0.854150 0.844512
25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 80.0000 80.0000
 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 80.0000 -10.0000 -10.0000
 -10.0000 -10.0000 -10.0000 -10.0000 -10.0000 -10.0000 -
10.0000 -10.0000 -10.0000
0.00000 0.100000 0.200000 0.300000 0.400000 0.500000 0.600000
 0.700000 0.800000 0.900000 1.00000 0.00000 0.100000 0.200000
 0.300000 0.400000 0.500000 0.600000 0.700000 0.800000
 0.900000 1.00000 0.00000 0.100000 0.200000 0.300000 0.400000
 0.500000 0.600000 0.700000 0.800000 0.900000 1.00000
% t_lin_coeff_dut: R_in, theta
1.25859 1.21503
10.0000 20.0000
% c_2p_nominal: Z_Result, theta t_2p_nominal: theta
0.200000 0.800000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
 0.00000
25.0000 80.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
25.0000 60.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
% c_fpp, c_fpp_int, theta_fpp, z_fpp, r_fpp, r_int_fpp
22 26 8 15 22 25
% General Settings
0 7 6 7
% cc: coefficients for the capacitance polynomial
-12,6380 35,1708 -36,7076 14,1334 -0,0384877 0,116354 -0,118114
 0,0402407 0,000297351 -0,000886266 0,000890576 -0,000301428
% tc: coefficients for the temperature polynomial
-268,932 351,061 0,00000 0,00000

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-21

3.7 Write to EEPROM

In the last step, the linearization coefficients need to be transferred to the EEPROM.

Therefore, open the EEPROM window, press “Refresh with Linearization Data” and then

press “Write”.

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-1

4 DLL Functions

4.1 Capacitance

4.1.1 Coefficients for single devices (c_lin_coeff_dut)

Name: c_lin_coeff_dut

Function: Determines the polynomial coefficients which fit best with least square

method for 3rd order to Capacitance and 2nd order to temperature. The coefficients were

determined as double values and 3byte-Integer to write them to the EEPROM of PCapØ2.

Declaration: void __cdecl c_lin_coeff_dut(int32_t C_in[], double z[], double theta[], int32_t

C_fpp, int32_t C_int_fpp, int32_t z_fpp, bool inverse, double cc[], uint32_t cc_fpp[],

int32_t ccx[], double cci[], double error_vs_z[], uint32_t cn_div[], int32_t cn_shift[], int32_t

n_samples, int32_t n_cc, int32_t n_cn_div, int32_t n_cn_shift);

Name Type Description

int32_t C_in[] in Array of capacitance ratios, data for all measured points

double z[] in Array of the result samples (reference values, e.g.

Pressure, Humidity)

double theta[] in Array of reference temperature samples (reference values)

int32_t C_fpp in Fix point position for C_in, 8-bit number

 typ: C_fpp = 22 => 22 fractional bits

(default: 22)

int32_t C_int_fpp in Fix point position of c ratio to determine division steps.8-bit

number (default: 26)

int32_t z_fpp in Fix point position for the result. 8-bit number

(typically: 15)

bool inverse in Flag to sign C_r is inverse

false :=

true :=

(default: true)

double cc[] out Array of 12 coefficients for the result polynomial

uint32_t cc_fpp [] out Array of 12 integer values with the fix point positions to ccx

Name Type Description

int32_t ccx[] Out à
EEPROM

Array 12 (4*3) unsigned integer coefficients for DSP

double cci[] out Array of 12 coefficients for the inverse capacitance

polynomial

double
error_vs_z[]

out Mathematical error vs z input

uint32_t cn_div[] Out à

EEPROM

Array of 9 integer values contains the number of division

steps for the cc determination

int32_t cn_shift[] Out à

EEPROM

Array of 3 signed integer value for the shift steps after last

sum.

n_shift <0 := right shift

n_shift>=0:= left shift

int32_t n_samples in Number of samples / length of the arrays C_in[], z[],
theta[] and error_vs_z[]

int32_t n_cc in Length of array cc (strongly recommended: 12)

int32_t n_cn_div in Length of array n_cn_div (strongly recommended: 9)

int32_t n_cn_shift in Length of array n_cn_shift (strongly recommended: 3)

4.1.2 Coefficients for characteristically (c_lin_coeff_batch)

Name: c_lin_coeff_batch

Declaration: void __cdecl C_lin_coeff_batch(double z[], int32_t z_fpp, double theta[],

int32_t C_in[], bool inverse, int32_t C_fpp, int32_t C_int_fpp, uint16_t method, int32_t

ci_mean_sel, double cc[], uint32_t cc_fpp[], int32_t ccx[], double cci[], double best_fit[],

uint32_t cn_div[], uint32_t cn_shift[], uint32_t n_samples, int32_t n_sample_x_devices,

int32_t n_cc, int32_t n_cn_div, int32_t n_cn_shift);

name type description

double z[] in array of the result samples (reference values, e.g.

Pressure, Humidity)

int32_t z_fpp in fix point position for the result (typically 15)

double theta[] in array of temperature samples (reference values)

int32_t C_in[] in array of capacitance ratios for example 4 calibration
points per device under test: DUT1[1], DUT1[2], DUT1[3],

DUT1[4], DUT2[1], DUT2[2], DUT2[3], DUT2[4],

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-3

name type description

DUT3[1]…

bool inverse in flag to sign C_r is inverse

false :=

true :=

int32_t C_fpp in fix point position for C_in

typ: C_fpp = 22 => 22 fractional bits

(for Linearize firmware strongly recommended: 22)

int32_t C_int_fpp in fix point position of c ratio to determine division steps.

(for Linearize firmware strongly recommended: 26)

uint16_t method in select a method to determine characteristically function:

0:= median
 for each measurement point median over all

devices
1:= mean

 for each measurement point mean value over all
devices

2:= all
 use all measurement points

int32_t

ci_mean_sel

in select element for mean determination

typically: n_samples/2

double cc[] out array of 12 coefficients for the result polynomial

uint32_t cc_fpp[] out array of 12 integer values with the fix point positions to
ccx

int32_t ccx[] Out à
EEPROM

array 12*3 unsigned integer coefficients for DSP

double cci[] out array of 12 coefficients for the inverse capacitance

polynomial

double best_fit[] out mathematical error vs z input (best fit)

uint32_t cn_div[] Out à
EEPROM

array of 9 integer values contains the number of division
steps for the cc determination

uint32_t cn_shift[] Out à

EEPROM

Array of 3 signed integer value for the shift steps after

last sum.

n_shift <0 := right shift

n_shift>=0:= left shift

name type description

uint32_t n_samples in number of samples / length of the arrays theta[], z[] and
error_vs_z[]

int32_t

n_sample_x_devices

in number of samples * devices / length of the array C_in[]

int32_t n_cc in length of array cc (strongly recommended: 12)

int32_t n_cn_div in length of array n_cn_div (strongly recommended: 9)

int32_t n_cn_shift in length of array n_cn_shift (strongly recommended: 3)

4.1.3 Nominal value for 2-point calibration (c_2p_nominal)

Name: c_2p_nominal

Function: Determines nominal values from reference values and coefficients

Declaration: void __cdecl C_2p_nominal(double z[], double theta[], double cc[], int32_t

C_fpp, int32_t C_out_hex[], double C_out[], int32_t n_samples, int32_t n_cc);

name type description

double z[] in Aarray of result samples (reference values, e.g. Pressure,
Humidity)

double theta[] in Array of temperature samples (reference values)

double cc[] in Array of 12 polynomial coefficients, cci values from

c_lin_coeff_batch

int32_t C_fpp in Fix point position for C_out

e.g. C_fpp = 22 => 22 fractional bits

(for Linearize firmware strongly recommended: 22)

int32_t

C_out_hex[]

Out à

EEPROM

Array of the nominal capacitance ratios (integer with C_fpp

fractional bits), x i

int32_t C_out[] out Array of the nominal capacitance ratios.

int32_t
n_samples

in Number of calibration points (1 or 2)

 / length of the array z[], theta[], C_out[] and C_out_hex[]

int32_t n_cc in Length of array cc (strongly recommended: 12)

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-5

4.2 Temperature

4.2.1 Coefficients for single devices (t_lin_coeff_dut)

Name: t_lin_coeff_dut

Function: Determines polynomial coefficients which fit best with least square method

for 3rd order to Capacitance and 2nd order to temperature. The coefficients were

determined as double values and 3byte-Integer to write to EEPROM to .

Declaration: void __cdecl T_lin_coeff_dut(int32_t R_in[], double theta[], uint32_t r_fpp,

uint32_t r_int_fpp, uint32_t theta_fpp, bool r_inverse, double tc[], uint32_t tc_fpp[],

int32_t tcx[], double tci[], uint32_t tn_div[], double error_vs_t[], int32_t n_samples,

int32_t n_tn_div, int32_t n_tc);

name type description

double R_in[] in Array of resistor ratios

double theta[] in Array of the result samples

uint32_t r_fpp in Fix point position for r_in

e.g. C_fpp = 22 => 22 fractional bits

(for Linearize firmware strongly recommended: 22)

uint32_t r_int_fpp in Fix point position of r ratio to determine division steps.

(for Linearize firmware strongly recommended: 25)

uint32_t theta_fpp in Fix point position for the result

(default: 8)

bool r_inverse in Flag to sign R_r is inverse

false :=

true :=

default := true

double tc[] out Array of 4 coefficients for the result polynomial

round to 5 decimal fractional digits

uint32_t tc_fpp[] out Array of 4 integer values with the fix point positions to tcx

uint32_t tcx[] out à

EEPROM

Array of 4 unsigned integer coefficients for DSP

name type description

double tci[] out Array of 4 coefficients for the inverse capacitance
polynomial

uint32_t tn_div[] Out à

EEPROM

Array of 3 integer values contains the number of division

steps for the tc determination

double
error_vs_t[]

out Mathematic error vs temperature input

int32_t n_samples in Number of samples / length of the arrays R_in[] , theta[]

and error_vs_t

int32_t n_tn_div in Length of array tn_div (strongly recommended: 3)

int32_t n_tc in Length of array tc (strongly recommended: 4)

4.2.2 Nominal value for 2-point calibration

Name: t_2p_nominal

Function: Determines nominal values from reference values and coefficients

Declaration: void __cdecl t_2p_nominal(double theta[], double tc[], int32_t R_fpp, int32_t

T_out_hex[], double T_out[], int32_t n_points, int32_t n_tc);

name type description

double theta[] in array of temperature samples (reference values)

double tc[] in array of 4 polynomial coefficients

int32_t R_fpp in fix point position for t_out

e.g. C_fpp = 22 => 22 fractional bits

(for Linearize firmware strongly recommended: 22)

int32_t

T_out_hex[]

out array of the nominal temperature ratios (integer with r_fpp

fractional bits)

double T_out[] out array of the nominal capacitance ratios.

int32_t n_points in number of calibration points (1 or 2) / length of array
theta[], t_out and t_out_hex

int32_t n_tc in length of array tc (Strongly recommended: 4)

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-7

5 Linearize Example Source Code

5.1 Example C-Code

Example code for Microsoft VisualC++ 2010:

#include "StdAfx.h"
#include <stdio.h>
#include <conio.h>
#include <stdint.h>
#include "linearize_r01.h"

#define printPrgHeader printf("\n--
----"); \
 printf("\n-------------- PCap02plus
Linearization ----------------"); \
 printf("\n--------- (c) acam messelectronic
gmbh, 2013 -----------"); \
 printf("\n--------------------------------------
------------------\n\n");

/* --- main() --- */
int main (int argc, char *argv[])
{
 //printf("Hello World");
 printPrgHeader
 int i;

 /* ----- Parameter for c_lin_coeff_dut ----- */
 int C_in[] = { 0x5353F7, 0x523D70, 0x51374B, 0x504189, 0x4F5C28,
0x4E76C8, 0x4D9168, 0x4CBC6A, 0x4C5A1C, 0x53126E, 0x51EB85, 0x50E560, 0x4FDF3B, 0x4EF9DB,
0x4E147A, 0x4D1EB8, 0x4C49BA, 0x4BE76C, 0x529FBE, 0x5178D4, 0x50624D, 0x4F4BC6, 0x4E5604,
0x4D6041, 0x4C6A7E, 0x4B851E, 0x4B126E };
 double theta [] = { 15.6, 15.6, 15.6, 15.6, 15.6, 15.6, 15.6, 15.6, 15.6,
25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 39.7, 39.7, 39.7, 39.7, 39.7, 39.7,
39.7, 39.7, 39.7 };
 double z [] = { 0.208, 0.309, 0.408, 0.507, 0.606, 0.704, 0.803, 0.901,
0.945, 0.208, 0.309, 0.408, 0.507, 0.606, 0.704, 0.803, 0.901, 0.945, 0.208, 0.309,
0.408, 0.507, 0.606, 0.704, 0.803, 0.901, 0.945 };
 const int n_samples = sizeof(C_in) / sizeof(C_in[0]);
 //const int n_samples = C_in.length();
 const int n_cc = 12;
 const int n_cn_div = 9 ;
 const int n_cn_shift = 3 ;
 int C_fpp = 22;
 int C_int_fpp = 26;
 int z_fpp = 8 ;
 int inverse = 0 ;

 /* Outputs */
 double cc[n_cc];
 uint32_t cc_fpp[n_cc];
 int32_t ccx[n_cc];
 double cci[n_cc];
 uint32_t cn_div[n_cn_div];
 int cn_shift[n_cn_shift];

 double error_vs_z[n_samples];
 /* ---

 /* ------ Parameter for c_2p_nominal ------- */
 double z_nominal[] = { 22.8, 73.6 };
 double theta_nominal[] = { 15.4, 39.7 };
 int n_samples_2P = sizeof(z_nominal) / sizeof(z_nominal[0]);

 /* Outputs */
 int C_out_hex[2] ;
 double C_out[2] ;
 /* ---

 /* ----------------- Start -----------------*/
 c_lin_coeff_dut (C_in, z, theta, C_fpp, C_int_fpp, z_fpp, inverse,
 // input
 cc, cc_fpp, ccx, cci, error_vs_z, cn_div, cn_shift,
 // output
 n_samples, n_cc, n_cn_div, n_cn_shift);
 // size of arrays (input)

 /* ------------------*/
 printf("Coefficients for single devices -- c_lin_coeff_dut\n");
 printf("Calibration values cc (ascending / [0..11])\n");
 for (i=0; i<=n_cc/4-1; i++)
 {
 printf("k0%d %f\tk1%d %f\tk2%d %f\tk3%d %f\n", i, cc[i*4+0], i, cc[i*4+1],
i, cc[i*4+2], i, cc[i*4+3]);
 }

 printf("\ncc_fpp (ascending / [0..11])\n");
 for (i=0; i<=n_cc/4-1; i++)
 {
 printf("#%d %d\t#%d %d\t#%d %d\t#%d %d\n", i*4+0, cc_fpp[i*4+0], i*4+1,
cc_fpp[i*4+1], i*4+2, cc_fpp[i*4+2], i*4+3, cc_fpp[i*4+3]);
 }

 printf("\ncn_div (ascending / [0..8])\n");
 for (i=0; i<=n_cn_div/3-1; i++)
 {
 printf("#%d %d\t#%d %d\t#%d %d\n", i*3+0, cn_div[i*3+0], i*3+1,
cn_div[i*3+1], i*3+2, cn_div[i*3+2]);
 }
 /*------------------------------*/
 C_2p_nominal (z_nominal, theta_nominal, cci, C_fpp, // input
 C_out_hex, C_out, // output
 n_samples_2P,n_cc); // size of arrays (input)

 printf("\nNominal value for 2-point calibration -- c_2p_nominal\n");
 for (i=0; i<=n_samples_2P-1; i++)
 {
 printf("#%d: Z: %f, theta: %f, C_out: %f, C_out_hex %x\n", i, z_nominal[i],
theta_nominal[i], C_out[i], C_out_hex[i]);
 }
 /*------------------------------*/
 printf("\nPress any key to continue");
 getch();

 return 0; /* return value main() */

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-9

} // EOF

Header file:

#include "stdint.h"
#pragma pack(push)
#pragma pack(1)

#ifdef __cplusplus
extern "C" {
#endif

/*!
 * Function: determines polynomial coefficients which fit best with least
 * square method for 3rd order to capacity and 2nd order to temperature. The
 * coefficients were determined as double values and 3byte-Integer to write to
 * EEPROM to PCap.
 */
void __cdecl c_lin_coeff_dut(int32_t C_in[], double z[], double theta[],
 int32_t C_fpp, int32_t C_int_fpp, int32_t z_fpp, int inverse,
 double cc[], uint32_t cc_fpp[], int32_t ccx[], double cci[],
 double error_vs_z[], uint32_t cn_div[], int32_t cn_shift[],
 int32_t n_samples, int32_t n_cc, int32_t n_cn_div, int32_t n_cn_shift);
/*!
 * Function: Determines nominal values from reference values and coefficients
 */
void __cdecl C_2p_nominal(double z[], double theta[], double cc[],
 int32_t C_fpp, int32_t C_out_hex[], double C_out[], int32_t n_samples,
 int32_t n_cc);
/*!
 * C_lin_coeff_batch
 */
void __cdecl C_lin_coeff_batch(double z[], int32_t z_fpp, double theta[],
 int32_t C_in[], int inverse, int32_t C_fpp, int32_t C_int_fpp,
 uint16_t method, int32_t ci_mean_sel, double cc[], uint32_t cc_fpp[],
 int32_t ccx[], double cci[], double best_fit[], uint32_t cn_div[],
 int32_t cn_shift[], uint32_t n_samples, int32_t n_samples_x_devices,
 int32_t n_cc, int32_t n_cn_div, int32_t n_cn_shift);
/*!
 * Function: determines polynomial coefficients which fit best with least
 * square method for 3rd order to capacity and 2nd order to temperature. The
 * coefficients were determined as double values and 3byte-Integer to write to
 * EEPROM to PCap.
 */
void __cdecl T_lin_coeff_dut(int32_t R_in[], double theta[], uint32_t r_fpp,
 uint32_t r_int_fpp, uint32_t theta_fpp, int r_inverse, double tc[],
 uint32_t tc_fpp[], int32_t tcx[], double tci[], uint32_t tn_div[],
 double error_vs_t[], int32_t n_samples, int32_t n_tn_div, int32_t n_tc);
/*!
 * Function: Determines nominal values from reference values and coefficients
 */
void __cdecl T_2p_nominal(double theta[], double tc[], int32_t R_fpp,
 int32_t T_out_hex[], double T_out[], int32_t n_points, int32_t n_tc);
/*!
 * Rgp

 */
void __cdecl Rgp(double X[], double Y[], double *slope, double *offset,
 int32_t n_input);

long __cdecl LVDLLStatus(char *errStr, int errStrLen, void *module);

#ifdef __cplusplus
} // extern "C"
#endif

#pragma pack(pop)

5.2 Output via Terminal:

Figure 6-1: Output via Terminal

PCapØ2 Linearize

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 7-11

7 Miscellaneous

acam-messelectronic gmbh

Friedrich-List-Straße 4

76297 Stutensee-Blankenloch

Germany

Phone +49 7244 7419 – 0

Fax +49 7244 7419 – 29

E-Mail support@acam.de

www.acam.de

http://www.acam.de/

